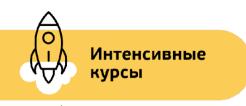

Программа интенсивного курса подготовки к региональному этапу ВсОШ по физике для 10–11 классов

Nº	Тема занятия	Тип занятия	Содержание занятия
1	Равноускоренное прямолинейное движение	Семинар	Понятие ускорения и случай равноускоренного движения. Графики зависимости пути, перемещения, скорости и ускорения в зависимости от пройденного времени. Решение задач на расчет скорости, пути или времени движения при равноускоренном движении.

- конспект занятия «Прямолинейное равноускоренное движение» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Графическое описание движения» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Равнопеременное прямолинейное движение» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Скатывание тележки с наклонной плоскости» (https://www.youtube.com/watch?v=U6ejvfcnclc&list=PLE5E65E9A742BF6D1&index=6);
- Мякишев Г.Я. Физика. Механика. М.: Дрофа. §§ 1.15–1.25;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит. §§ 1.5–1.7.

2	Динамика прямолинейного движения. Законы Ньютона	Семинар	Понятие равнодействующей силы. Формулировка трёх законов Ньютона. Примеры описания движения тел по наклонной плоскости. Примеры нахождения кинематических связей. Движение связанных грузов, подвижные и неподвижные блоки.
---	---	---------	--



- конспект занятия «Принцип суперпозиции сил. Инерциальные системы отсчета» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Второй закон Ньютона» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Динамика прямолинейного движения. Законы Ньютона» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Кинематические связи» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Выдергивание скатерти из-под сосуда с водой» (https://www.youtube.com/watch?v=xVSWuvZ8aQA&list=PL04E078C955FC10E5&index=4);
- дополнительный видеоматериал «Взаимодействие стального шарика с магнитом» (https://www.youtube.com/watch?v=y44zFqyx96U&list=PL04E078C955FC10E5&index=3);
- Мякишев Г.Я. Физика. Механика. М.: Дрофа. §§ 2.1–2.8;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

3 Статика Семинар	Понятие плеча и момента силы. Условие динамического и статического равновесия. Равновесие на рычаге. Подвижные и неподвижные блоки.
-------------------	---

- конспект занятия «Статическое равновесие» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Рычаг» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Блоки» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Статическое равновесие» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Блоки» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Рычаг» (предоставляется в личном кабинете на электронной образовательной платформе);
- Мякишев Г.Я. Физика. Механика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

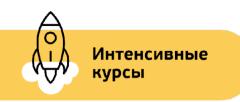
4	Законы сохранения импульса и энергии	Семинар	Понятие импульса материальной точки и импульса системы тел. Импульс силы. Законы сохранения и изменения импульса. Понятия механической работы, средней и мгновенной мощности. Кинетическая и потенциальная энергия. Закон сохранения и изменения энергии. Решение кинематических и динамических задач с использованием законов сохранения импульса и энергии.
---	--------------------------------------	---------	---

- конспект занятия «Импульс. Закон сохранения импульса» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Закон сохранения импульса и энергии» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Импульс материальной точки и системы материальных точек. Закон сохранения импульса» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Закон сохранения импульса и энергии» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Выстрел вперед с движущейся тележки» (https://www.youtube.com/watch?v=-Hd8UEIFD0M&list=PLWM8IO-3TQjNWXvjsg3BGeErxGJdoWkUq&index=3);
- дополнительный видеоматериал «Выстрел назад с движущейся тележки» (https://www.youtube.com/watch?v=HzHAj62yn5o&list=PLWM8IO-3TQjNWXvjsg3BGeErxGJdoWkUq&index=4);
- дополнительный видеоматериал «Маятник Галилея» (https://www.youtube.com/watch?v=3VWbU88UYX0&list=PL32C81AC7B5EA0E12);
- дополнительный видеоматериал «Шарик в мертвой петле» (https://www.youtube.com/watch?v=roFrbTwvKxq&list=PL32C81AC7B5EA0E12&index=3);
- Мякишев Г.Я. Физика. Механика. М.: Дрофа. §§ 6.1 6.12;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит. §§ 16.1 16.6.

5	Уравнение теплового баланса	Семинар	Агрегатные состояния вещества. Плавление. Тепловое расширение. Удельная теплота плавления. Испарение. Кипение. Удельная теплота парообразования.
	***************************************	***************************************	

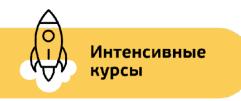
- конспект занятия «Уравнение теплового баланса» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Испарения и конденсация. Кипение» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Агрегатные состояния вещества» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Агрегатные состояния вещества. Плавление и кристаллизация» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Испарение и конденсация. Кипение» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Перегретая жидкость» (https://www.youtube.com/watch?v=2dVJV_QC5pc&list=PL97A618CD0438CB24&index=2);
- дополнительный видеоматериал «Критическое состояние эфира» (https://www.youtube.com/watch?v=mY5uFaIPJLg&list=PL97A618CD0438CB24);
- дополнительный видеоматериал «Хрупкая резина» (https://www.youtube.com/watch?v=qJlOLs3U5NU&list=PL97A618CD0438CB24&index=4);
- Мякишев Г.Я. Физика. Молекулярная физика. М.: Дрофа.

6	Мощность и КПД	Семинар	Мощность и КПД нагревателя. Мощность тепловых потерь.	:
	нагревателя	· ·	Уравнение теплового баланса с учетом фазовых переходов,	



			подведенного тепла и тепловых потерь.	
Мат	ериалы методического сопр	оовождения:		
•	конспект занятия «Уравнен платформе);	ние теплового баланса» (пре	доставляется в личном кабинете на электронной образовательной	
•	конспект занятия «Энергия т	гоплива» (предоставляется в л	ичном кабинете на электронной образовательной платформе);	
•	дополнительный видеомате платформе);	риал «Энергия топлива» (пред	оставляется в личном кабинете на электронной образовательной	
•	• дополнительный видеоматериал «Количество теплоты» (предоставляется в личном кабинете на электронной образовательной платформе);			
•	 дополнительный видеоматериал «Уравнение теплового баланса» (предоставляется в личном кабинете на электронной образовательной платформе); 			
•	дополнительный видеомате	риал «Хаотичность движения і	з газе»	
	(https://www.youtube.com/wa	tch?v=kXT73kEgVKQ&list=PLC3	80EE9E8F2526AA&index=1);	
	 дополнительный видеоматериал «Модель броуновского движения» (https://www.youtube.com/watch?v=Xj2rBljcZyU&list=PLC380EE9E8F2526AA&index=2); Мякишев Г.Я. Физика. Молекулярная физика. М.: Дрофа. 			
7	Уравнение состояния идеального газа. Изопроцессы	Семинар	Уравнение состояния для идеального газа. Понятие изопроцессов, законы Гей-Люссака, Бойля-Мариотта, Шарля из уравнения состояния. Графики соответствующих изопроцессов в различных координатах.	

• конспект занятия «Уравнение состояния идеального газа. Изопроцессы» (предоставляется в личном кабинете на электронной образовательной платформе);



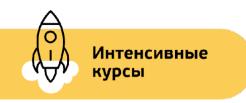
- дополнительный видеоматериал «Основные положения молекулярной кинетической теории» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Уравнение состояния идеального газа. Изопроцессы» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Модель идеального газа. Опыт Эйхенвальда» (http://genphys.phys.msu.ru/rus/lecdemo/MolPhys/index.html);
- Мякишев Г.Я. Физика. Молекулярная физика. Термодинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

8	Первое начало термодинамики	Семинар	Понятие внутренней энергии и работы идеального газа для изохорического, изобарного и изотермического процесса. Понятие теплоемкости, удельной теплоемкости и молярной теплоемкости. Теплоемкость газов при постоянном объёме и давлении. Первый закон термодинамики.
---	--------------------------------	---------	--

- конспект занятия «Первое начало термодинамики» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Теплоемкость. Удельная и молярная теплоемкости» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Внутренняя энергия идеального газа. Работа идеального газа» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Теплоемкость идеального газа» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Превращение теплоты в работу» (http://genphys.phys.msu.ru/rus/lecdemo/MoIPhys/index.html);
- Мякишев Г.Я. Физика. Молекулярная физика. Термодинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

9	Постоянный электрический ток. Последовательное параллельное соединение резисторов	Семинар	Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Удельное сопротивление. Законы последовательного и параллельного соединения резисторов. Расчет общего сопротивления электрических схем. Расчет электрических цепей.		
Мат	ериалы методического сопров	ождения:			
	 статья «Постоянный электрический ток» (предоставляется в личном кабинете на электронной образовательной платформе); статья «Соединение проводников» (предоставляется в личном кабинете на электронной образовательной платформе); дополнительный видеоматериал «Постоянный электрический ток» (http://genphys.phys.msu.ru/rus/lecdemo/ElMag/index.html); дополнительный видеоматериал «Зависимость сопротивления полупроводника от температуры» (https://www.youtube.com/watch?v=lvZpe9CC7c8&list=PLWM8IO-3TQjOvDBfNIV-DT2dJ5AHQnv&index=3); дополнительный видеоматериал «Цепочка из различных металлов» (https://www.youtube.com/watch?v=N638UEoSRYO&list=PLWM8IO-3TQjOvDBfNIV-DT2dJ5AHQnv&index=5); Мякишев Г.Я. Физика. Электродинамика. М.: Дрофа. Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит. 				
10	Закон Ома	Семинар	Сила тока. Напряжение. Сопротивление. Единицы измерения. Приборы, измеряющие эти величины. Формулировка закона Ома для однородного участка цепи.		

- статья «Постоянный электрический ток» (предоставляется в личном кабинете на электронной образовательной платформе);
- статья «Закон Ома» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Постоянный электрический ток» (http://genphys.phys.msu.ru/rus/lecdemo/ElMag/index.html);
- дополнительный видеоматериал «Падение потенциала вдоль проводника» (https://www.youtube.com/watch?v=tC8a5onYSfs&list=PLWM8IO-3TQjOvDBfNI_-V-DT2dJ5AHQnv);



	 Мякишев Г.Я. Физика. Электродинамика. М.: Дрофа; Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит. 			
11	Электрический конденсатор	Семинар	Понятие электрической емкости. Энергия конденсаторов. Параллельное и последовательное соединение конденсаторов. Конденсаторные цепи.	

- конспект занятия «ЭДС. Закон Ома» (предоставляется в личном кабинете на электронной образовательной платформе);
- статья «Конденсаторы. Энергия магнитного поля» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Постоянный электрический ток» (http://genphys.phys.msu.ru/rus/lecdemo/ElMag/index.html);
- дополнительный видеоматериал «Зависимость сопротивления полупроводника от температуры» (https://www.youtube.com/watch?v=lvZpe9CC7c8&list=PLWM8IO-3TQjOvDBfNI_-V-DT2dJ5AHQnv&index=3);
- дополнительный видеоматериал «Цепочка из различных металлов» (https://www.youtube.com/watch?v=N638UEoSRY0&list=PLWM8IO-3TQjOvDBfNI_-V-DT2dJ5AHQnv&index=5);
- дополнительный видеоматериал «Стеклянная палочка между пластинами конденсатора» (https://www.youtube.com/watch?v=6iK3vwH0DnE&list=PLWM8IO-3TQjPtxE1E-4-nMw_zs4BdyeeU&index=7);
- Мякишев Г.Я. Физика. Электродинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.

			Прямолинейное распространение света. Закон отражения света.	
12	Геометрическая оптика	Семинар	Закон преломления света. Полное внутреннее отражение. Формула	
			тонкой линзы.	

- статья «Закон отражения света» (предоставляется в личном кабинете на электронной образовательной платформе);
- статья «Закон преломления света. Полное внутреннее отражение» (предоставляется в личном кабинете на электронной образовательной платформе);
- статья «Построение изображений в тонких линзах» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Законы преломления света. Полное внутреннее отражение света» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Линзы. Построение изображения в линзах. Формула тонкой линзы. Увеличение линзы» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Оптические приборы» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Полное внутреннее отражение» (https://www.youtube.com/watch?v=HN37Jz8DHYg&list=PLWM8IO-3TQjN-LXdSCKSiPBFyBhl4HC-R&index=2);
- дополнительный видеоматериал «Модель световода» (https://www.youtube.com/watch?v=GQrykfls0eQ&list=PLWM8IO-3TQjN-LXdSCKSiPBFvBhl4HC-R&index=4);
- дополнительный видеоматериал «Хроматическая аберрация» (http://genphys.phys.msu.ru/rus/lecdemo/Optics/index.php);
- дополнительный видеоматериал «Сферическая аберрация» (http://genphys.phys.msu.ru/rus/lecdemo/Optics/index.php);
- Мякишев Г.Я. Физика. Оптика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.

13	Пробный региональный этап ВсОШ	Контрольная работа	Написание пробной олимпиадной работы.
----	-----------------------------------	--------------------	---------------------------------------

- раздаточный материал для проведения пробной олимпиады;
- задания и решения регионального этапа ВсОШ прошлых лет (https://olimpiada.ru/activity/74/tasks).

14	Разбор пробного регионального этапа ВсОШ	Семинар	Разбор заданий, повтор пройденного материала.
Материалы методического сопровождения: ● раздаточный материал с решениями задач пробной олимпиады.			