АПО 28.10.2022

III тур

Решения

Старт

Сумма трёх различных правильных положительных дробей равна 1. Какое наименьшее значение может принимать сумма знаменателей этих дробей?

Ответ: 11.

Решение: Приведём сначала пример, в котором сумма знаменателей равна 11: $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$. Докажем, что сумму меньше получиться нельзя. Пусть существует пример с суммой знаменателей меньше 11. Если среди знаме-

Пусть существует пример с суммой знаменателей меньше 11. Если среди знаменателей наименьший равен 3, то либо сумма знаменателей хотя бы 3+4+4=11, либо сумма дробей больше $\frac{1}{3}+\frac{2}{3}=1$. Значит, среди дробей есть $\frac{1}{2}$. В случае если нет дроби со знаменателем 3 либо сумма знаменателей хотя бы 2+4+5=11, либо сумма дробей не меньше $\frac{1}{2}+\frac{1}{4}+\frac{2}{4}=\frac{5}{4}>1$. Значит, есть и знаменатель 3. Если у третьей дроби знаменатель не больше 5, то минимальная сумма дробей $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}=\frac{31}{30}>1$. Значит, в этом случае сумма знаменателей хотя бы 2+3+6=11. Получаем противоречие с предположением о том, что искомая сумма может быть меньше 11.

Критерии оценивания: Полное решение с оценкой и примером — 7 баллов. Пример с суммой 11-3 балла.

Юниоры

Найдите клетчатый прямоугольник наименьшей площади, который можно разбить по линиям сетки на 6 различных клетчатых фигур.

Решение: 6 минимальных по площади клетчатых фигур — это квадрат 1×1 ; прямоугольники 1×2 , 1×3 , уголок из трёх клеток, а также какие-то две четырёх-клеточные фигуры. Значит, минимальная площадь искомого прямоугольника 1+2+3+3+4+4=17. Прямоугольник площади 17 клеток — это 1×17 . Поскольку для такого прямоугольника должен быть выбран набор с наименьшими площадями, то обязательно следует взять трёхклеточный уголок, который не может быть вырезан из прямоугольника 1×17 . Значит, минимальная площадь 18 клеток. Один из возможных примеров приведён ниже.

Критерии оценивания: Полное решение — 7 баллов. Пример с площадью 18 клеток — 3 балла. Оценка на 18 клеток — 3 балла.

Сеньоры

Уравнение $\frac{1}{x}+\frac{1}{y}=\frac{1}{N}$ имеет ровно 2023 упорядоченных натуральных решения (x,y). Докажите, что N — точный квадрат.

Решение: После домножения исходного уравнения на xyN получим равносильное уравнение yN+xN=xy. Перенесём все слагаемые в правую сторону и добавим к обеим частям N^2 , воспользовавшись Simon's Favourite Factoring Trick, чтобы прийти к равносильному $(x-N)(y-N)=N^2$. Поскольку нас интересуют упорядоченные пары (x,y), то можно считать, что $x\leqslant y\Rightarrow x-N\leqslant y-N$. Заметим, что если обе скобки x-N и y-N отрицательные, то из натуральности x,y следует, что $(x-N)\cdot (y-N)\leqslant (1-N)(1-N)< N^2$. Значит, $0\leqslant x-N\leqslant y-N$ и $(x-N), (y-N)\in\mathbb{Z}$. Тогда (x-N) и (y-N) натуральные числа с произведением N^2 , а количество упорядоченных решений (x,y) совпадает с количеством натуральных делителей N^2 , не превышающих $\sqrt{N^2}=N$. Заметим, что все такие делители являются натуральными делителями N. Тогда y N нечётное количество (2023) натуральных делителя, поэтому N — точный квадрат.

Критерии оценивания: Полное решение — 7 баллов.

Комментарий: Подробнее о Simon's Favourite Factoring Trick можно прочитать в статье на AOPS.

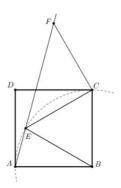
Открытая лига

Внутри квадрата ABCD отмечена точка E, а на луче AE, пересекающем сторону CD, взята точка F. Оказалось, что AB=CE, и треугольник ECF прямоугольный равнобедренный (EC=CF). Найдите $\angle ABE$.

Ответ: 30° .

Решение 1: ECF — прямоугольный равнобедренный треугольник, поэтому $\angle CEA = 135^{\circ}$. Рассмотрим окружность ω с центром B и радиусом BA = BC. $\angle CEA$ дополняет половину $\angle ABC$ до 180° , поэтому точка E тоже лежит на

окружности ω . Тогда BE=BC=BA=CE, треугольник BCE — равносторонний, $\angle CBE=60^\circ$, откуда и следует ответ.



Решение 2: Отметим точку E' внутри квадрата ABCD, а точку F' — снаружи так, что треугольники BCE' и CDF' равносторонние. Заметим, что треугольники ABE' (AB=BE') и ADF' (AD=DF') равнобедренные. Тогда $\angle BAE' = \angle BE'A = \frac{180^{\circ} - \angle ABE'}{2} = \frac{180^{\circ} - (\angle ABC - \angle E'BC)}{2} = \frac{180^{\circ} - (90^{\circ} - 60^{\circ})}{2} = 75^{\circ},$ $\angle BAF' = \angle BAD - \angle F'AD = 90^{\circ} - \frac{180^{\circ} - \angle ADF'}{2} = 90^{\circ} - \frac{180^{\circ} - (\angle ADC + \angle CDF')}{2} = \frac{180^{\circ} - (2ADC + 2CDF')}{2} = \frac$ = 90° $-\frac{180^{\circ}-(90^{\circ}+60^{\circ})}{2}$ = 75° = $\angle BAE'$, поэтому точки A,~E' и F' лежат на одной прямой. Кроме того, $\angle E'CF' = \angle E'CD + \angle DCF' = (\angle BCD - \angle BCE') +$ $\angle DCF' = (90^{\circ} - 60^{\circ}) + 60^{\circ} = 90^{\circ}$, и E'C = BC = CD = CF', поэтому треугольник E'CF' прямоугольный равнобедренный, и он равен прямоугольному равнобедренному треугольнику ЕСГ по двум сторонам и углу между ними (E'C=EC, F'C=FC, $\angle BAE'=90^\circ=\angle BE'A$). Заметим, что точки B, D, E, F, E' и F' лежат на одной окружности с центром C. Если точки E и E'не совпадают, то из равенства треугольников ECF и E'CF' и предположения, что точка E лежит на дуге BE', получим, что точка F лежит на дуге F'D, а из предположения, что точка E лежит на дуге DE' получим, что точка F лежит на дуге F'C. В обоих случаях точки A, E и F не лежат на одной прямой, так как на одной прямой лежат точки A, E', F'. Получаем противоречие. Значит, E = E', и $\angle ABE = \angle ABE' = 30^{\circ}$.

Решение 3: Заметим, что точки B,D,E и F лежат на одной окружности с центром C. Обозначим данную окружность за Ω . $AB \perp CB$ и $AD \perp CD \Rightarrow AB$ и AD касательные к Ω . Значит, точка A лежит на симедиане треугольника BFD, проведённой к стороне BD. Пусть P — точка пересечения диагоналей квадрата ABCD. Тогда P — середина BD, и $\angle BFP = \angle DFA = \alpha$. Центральный $\angle ECD$, опирающийся на дугу DE, в 2 раза больше вписанного $\angle DFE$, опирающегося на ту же дугу, поэтому $\angle ECD = 2 \cdot \angle DFA = 2\alpha$. $DCF = \angle ECF - \angle ECD = 90^\circ - 2\alpha$. $\angle BCF = \angle BCD + \angle DCF = 90^\circ + (90^\circ - 2\alpha) = 180^\circ - 2\alpha$. В равнобедренном треугольнике BCF: $\angle CBF = \angle CFB = \frac{180^\circ - \angle BCF}{2} = \frac{180^\circ - 2\alpha}{2} = \alpha$. Тогда $\angle CBF = 2CBF$

 $\alpha=\angle BFP\Rightarrow BC\parallel FP$. Но $BC\perp CD$, поэтому $PF\perp CD$, но точка P лежит на серединном перпендикуляре к CD, поэтому F также лежит на серединном перпендикуляре к CD. Значит, $DF=FC=CD\Rightarrow$ треугольник CDF равносторонний. Значит, $\angle FCD=60^\circ\Rightarrow\angle DCE=\angle FCE-\angle FCD=90^\circ-60^\circ=30^\circ,$ $\angle BCE=\angle BCD-\angle ECD=90^\circ-30^\circ=60^\circ$. Значит, треугольник BCE равнобедренный (BC=CE) с $\angle BCE=60^\circ\Rightarrow$ треугольник BCE равносторонний, поэтому $\angle CBE=60^\circ$, а $\angle ABE=\angle ABC-\angle CBE=90^\circ-60^\circ=30^\circ$.

Критерии оценивания: Полное решение — 7 баллов.

Комментарий: Подробнее о симедиане можно прочитать в журнале «Квант».

