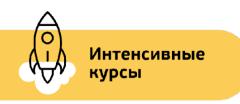


Программа интенсивного курса подготовки к заключительному этапу олимпиады «Физтех» по физике для 11 классов

Nº	Тема занятия	Тип занятия	Содержание занятия
1	Механика. Динамика, законы Ньютона, сила трения	Семинар	Формулировка законов Ньютона. Примеры динамического описания движения тела/системы тел.

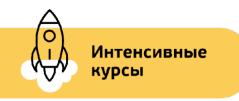
- конспект занятия «Принцип суперпозиции сил. Инерциальные системы отсчета» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Второй закон Ньютона» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Равнопеременное прямолинейное движение» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Баллистическое движение» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Динамика прямолинейного движения. Законы Ньютона» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Скатывание тележки с наклонной плоскости» (https://www.youtube.com/watch?v=U6ejvfcnclc&list=PLE5E65E9A742BF6D1&index=6);
- дополнительный видеоматериал «Выдергивание скатерти из-под сосуда с водой» (https://www.youtube.com/watch?v=xVSWuvZ8aQA&list=PL04E078C955FC10E5&index=4);
- дополнительный видеоматериал «Взаимодействие стального шарика с магнитом» (https://www.youtube.com/watch?v=y44zFqyx96U&list=PL04E078C955FC10E5&index=3);
- Мякишев Г.Я. Физика. Механика. М.: Дрофа. §§ 2.1–2.8;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.


2	Механика. Кинематические связи	Семинар	Примеры нахождения кинематических связей. Движение связанных грузов, подвижные и неподвижные блоки.	Jan 11 11 11 11 11 11 11 11 11 11 11 11 11
				É

- конспект занятия «Кинематические связи» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Блоки» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Кинематические связи» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Блоки» (предоставляется в личном кабинете на электронной образовательной платформе);
- Мякишев Г.Я. Физика. Механика. М.: Дрофа. §§ 1.15–1.25, 2.1–2.8;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

3	Механика. Законы сохранения, вращательное движение	Семинар	Закон сохранения и изменения импульса, закон сохранения энергии. Второй закон Ньютона в импульсной форме. Понятия радиуса вектора системы материальных точек и скорости центра масс системы материальных точек. Вращательное движение.
---	--	---------	--

- конспект занятия «Динамика движения по окружности» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Импульс. Закон сохранения импульса» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Закон сохранения импульса и энергии» (предоставляется в личном кабинете на электронной образовательной платформе):
- дополнительный видеоматериал «Динамика движения материальной точки по окружности» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Импульс материальной точки и системы материальных точек. Закон сохранения импульса» (предоставляется в личном кабинете на электронной образовательной платформе);



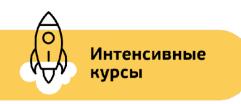
- дополнительный видеоматериал «Закон сохранения импульса и энергии» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Опыт с точилом»
 (https://www.youtube.com/watch?v=k3SIL19D2rE&list=PLE5E65E9A742BF6D1&index=4);
- дополнительный видеоматериал «Сложение угловых скоростей» (http://genphys.phys.msu.ru/rus/lecdemo/Mech/index.php);
- дополнительный видеоматериал «Выстрел вперед с движущейся тележки» (https://www.youtube.com/watch?v=-Hd8UEIFD0M&list=PLWM8IO-3TQjNWXvjsg3BGeErxGJdoWkUq&index=3);
- дополнительный видеоматериал «Маятник Галилея» (https://www.youtube.com/watch?v=3VWbU88UYX0&list=PL32C81AC7B5EA0E12);
- дополнительный видеоматериал «Баллистический маятник» (https://www.youtube.com/watch?v=58Emxn9Xkel&list=PLWM8IO-3TQjNWXvjsg3BGeErxGJdoWkUq&index=7);
- Мякишев Г.Я. Физика. Механика. М.: Дрофа. §§ 1.26–1.28, 6.1–6.12;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит. §§ 4.7–4.8, 16.1–16.6.

4	Термодинамика. Газовые законы, первое начало термодинамики	Лекция	Уравнение состояния для идеального газа. Газовые законы. Понятие внутренней энергии и работы идеального газа для изохорического, изобарного и изотермического процессов. Первый закон термодинамики.	
---	--	--------	---	--

- конспект занятия «Уравнение состояния идеального газа. Изопроцессы» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Первое начало термодинамики» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Уравнение состояния идеального газа. Изопроцессы» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Внутренняя энергия идеального газа. Работа идеального газа» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Теплоемкость идеального газа» (предоставляется в личном кабинете на электронной образовательной платформе);

- дополнительный видеоматериал «Модель идеального газа. Опыт Эйхенвальда» (http://genphys.phys.msu.ru/rus/lecdemo/MolPhys/index.html);
- дополнительный видеоматериал «Превращение теплоты в работу» (http://genphys.phys.msu.ru/rus/lecdemo/MolPhys/index.html);
- дополнительный видеоматериал «Адиабатическое охлаждение» (https://www.voutube.com/watch?v=4KEp5RxwYf0&list=PLC380EE9E8F2526AA&index=4):
- Мякишев Г.Я. Физика. Молекулярная физика. Термодинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

5	Термодинамика. Циклы, КПД	Семинар	Понятие КПД для термодинамических циклов. Цикл Карно. Примеры расчета КПД термодинамических циклов.
---	------------------------------	---------	--


- статья «Тепловые машины» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «Адиабатический процесс. Уравнение Пуассона» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Тепловые двигатели» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Двигатель Стирлинга» (https://www.youtube.com/watch?v=bdqSAV5pDBI&list=PL157D6AC00ECCC3FA&index=7);
- Мякишев Г.Я. Физика. Молекулярная физика. Термодинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

6	Термодинамика. Влажность, пары	Семинар	Испарение. Причины поглощения тепла при испарении. Конденсация пара. Кипение. Удельная теплота парообразования. Относительная и абсолютная влажность воздуха. Давление и плотность насыщенных паров.
---	-----------------------------------	---------	---

Материалы методического сопровождения:

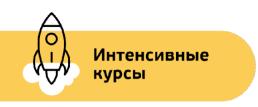
• конспект занятия «Влажность воздуха» (предоставляется в личном кабинете на электронной образовательной платформе);



- конспект занятия «Испарение и конденсация. Кипение» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Влажность воздуха» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Испарение и конденсация. Кипение» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Перегретая жидкость» (https://www.youtube.com/watch?v=2dVJV_QC5pc&list=PL97A618CD0438CB24&index=2);
- дополнительный видеоматериал «Критическое состояние эфира» (https://www.youtube.com/watch?v=mY5uFalPJLg&list=PL97A618CD0438CB24);
- Мякишев Г.Я. Физика. Молекулярная физика. Термодинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 1. М.: Физматлит.

7	Электричество. Электрические цепи. Конденсаторы	Семинар	Законы Кирхгофа. Электрическая ёмкость. Энергия конденсаторов. Параллельное и последовательное соединение конденсаторов. Конденсаторные цепи.
---	---	---------	---

- конспект занятия «ЭДС. Закон Ома» (предоставляется в личном кабинете на электронной образовательной платформе);
- статья «Конденсаторы. Энергия магнитного поля» (предоставляется в личном кабинете на электронной образовательной платформе):
- дополнительный видеоматериал «Постоянный электрический ток» http://genphys.phys.msu.ru/rus/lecdemo/ElMag/index.html;
- дополнительный видеоматериал «Зависимость сопротивления полупроводника от температуры» (https://www.youtube.com/watch?v=lvZpe9CC7c8&list=PLWM8IO-3TQjOvDBfNI_-V-DT2dJ5AHQnv&index=3);
- дополнительный видеоматериал «Цепочка из различных металлов» (https://www.youtube.com/watch?v=N638UEoSRY0&list=PLWM8IO-3TQjOvDBfNI_-V-DT2dJ5AHQnv&index=5);
- дополнительный видеоматериал «Стеклянная палочка между пластинами конденсатора» (https://www.youtube.com/watch?v=6iK3vwH0DnE&list=PLWM8IO-3TQjPtxE1E-4-nMw_zs4BdyeeU&index=7);
- Мякишев Г.Я. Физика. Электродинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.


8	Электричество. Электромагнитные явления	Семинар	Движение заряженных частиц в электрических и магнитных полях. Сила Лоренца, закон электромагнитной индукции, движение проводника с током в магнитном поле.	
---	---	---------	--	--

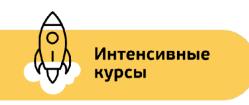
- статья «Магнитное поле. Силы Лоренца и Ампера» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции. Модуль вектора магнитной индукции. Сила Ампера. Применение силы Ампера» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Действие магнитного поля на движущийся заряд. Сила Лоренца. Магнитные свойства вещества. Применение силы Лоренца» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Взаимодействие параллельных токов» (https://www.youtube.com/watch?v=g37PEIxgCVs&list=PLWM8IO-3TQjPns4A7jeEAGURh_BBV3Grt);
- дополнительный видеоматериал «Контур с током в однородном магнитном поле» (https://www.youtube.com/watch?v=CgEmIroaKFQ&list=PLWM8IO-3TQjPns4A7jeEAGURh_BBV3Grt&index=6);
- Мякишев Г.Я. Физика. Электродинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.

9	Электричество. Катушка индуктивности	Семинар	Катушки индуктивности. Дифференциальные уравнения для электрических цепей с конденсатором и катушкой.
---	---	---------	---

- статья «Электромагнитная индукция» (предоставляется в личном кабинете на электронной образовательной платформе);
- статья «Самоиндукция» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Электромагнитная индукция. Магнитный поток. Правило Ленца. Закон ЭМИ. ЭДС индукции в движущихся проводниках» (предоставляется в личном кабинете на электронной образовательной платформе);

- дополнительный видеоматериал «Явление самоиндукции. Индуктивность. Энергия магнитного поля» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Закон Фарадея. Гибкий контур» (https://www.youtube.com/watch?v=JbYaeOYOMTQ&list=PLWM8IO-3TQjOm1VahNbxIPaTO-3W4iP2_);
- дополнительный видеоматериал «Закон электромагнитной индукции» (https://www.youtube.com/watch?v=jgwQVP2gYcs&list=PLWM8IO-3TQjOm1VahNbxIPaTO-3W4iP2_&index=5);
- дополнительный видеоматериал «Закон самоиндукции» (https://www.youtube.com/watch?v=MRA-YE2Mtv8&list=PLWM8IO-(3TQjOm1VahNbxIPaTO-3W4iP2_&index=16);
- Мякишев Г.Я. Физика. Электродинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.

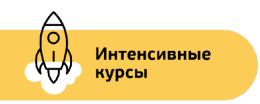
10	Электричество. Решение задач	Семинар	Нахождение точек с равными потенциалами. Расчет общего сопротивления с использованием метода узловых потенциалов. Мостик Уинстона. Решение задач на взаимодействие зарядов.
----	---------------------------------	---------	---


- конспект занятия «Мостовые схемы. Преобразование звезда-треугольник» (предоставляется в личном кабинете на электронной образовательной платформе);
- конспект занятия «ЭДС. Закон Ома» (предоставляется в личном кабинете на электронной образовательной платформе);
- Мякишев Г.Я. Физика. Электродинамика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.

ון	Оптика. Геометрическая оптика	Семинар	Законы отражения и преломления, изображения в плоских зеркалах, полное внутреннее отражение.
----	----------------------------------	---------	--

Материалы методического сопровождения:

• статья «Закон отражения света» (предоставляется в личном кабинете на электронной образовательной платформе);


- статья «Закон преломления света. Полное внутреннее отражение» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Законы преломления света. Полное внутреннее отражение света» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Полное внутреннее отражение» (https://www.youtube.com/watch?v=HN37Jz8DHYg&list=PLWM8IO-3TQjN-LXdSCKSiPBFyBhl4HC-R&index=2);
- дополнительный видеоматериал «Модель световода» (https://www.youtube.com/watch?v=GQrykfls0eQ&list=PLWM8IO-3TQjN-LXdSCKSiPBFyBhl4HC-R&index=4);
- Мякишев Г.Я. Физика. Оптика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.

12	Оптика. Тонкие линзы	Семинар	Тонкие линзы. Системы «линза-зеркало», «линза-линза».	
----	----------------------	---------	---	--

- статья «Построение изображений в тонких линзах» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Линзы. Построение изображения в линзах. Формула тонкой линзы. Увеличение линзы» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Оптические приборы» (предоставляется в личном кабинете на электронной образовательной платформе);
- дополнительный видеоматериал «Хроматическая аберрация» (http://genphys.phys.msu.ru/rus/lecdemo/Optics/index.php);
- дополнительный видеоматериал «Сферическая аберрация» (http://genphys.phys.msu.ru/rus/lecdemo/Optics/index.php);
- Мякишев Г.Я. Физика. Оптика. М.: Дрофа;
- Яворский Б.М., Пинский А.А. Основы физики. Т. 2. М.: Физматлит.

13	Пробный заключительный этап олимпиады «Физтех»	Контрольная работа	Написание пробной олимпиадной работы.	
----	--	--------------------	---------------------------------------	--

$\triangle \Box O + \triangle \Box O$

Материалы методического сопровождения:						
 раздаточный материал для пробной олимпиады; задания и решения заключительного этапа олимпиады «Физтех» прошлых лет (https://olymp.mipt.ru/olympiad/samples). 						
14	Разбор пробного заключительного этапа	Семинар	Разбор заданий, повторение пройденного материала.			
Материалы методического сопровождения:						

• раздаточный материал с решениями задач пробной олимпиады.